

to most other sport trainers of this size.
Since the Old Timer is a 1990's rendition, many positive design qualities of this era were incorporated. Remember, these models initially were free flight, and later were single channel rudder only. They had to have gobs of built-in stahility because of minimal means of control. 1 did deviate from the vintage designs, first, many models of this era had the wheels and landing gear under the engine - no wonder hand launching was often necessary as this set-up would not R.O.G. without ground looping. The Old Timer has the landing gvar/wheel axles at the wing leading edge. Anotber deviation is the length of the nose and tail moments. 1 adjusted both to modern parameters making balaneing simple and exsy. Many ISGO's era models had very short nove and very long tail moments, the purpose of the long tail was to increase stabality around the pitch axis since there was no elevator control (free night or rudder control only. . Fl never guess why the nose moments were so short since it required locating the radio, batteries, and or the addition of lead ballast in the nose to balanse the model. The Old Timer, on the cther hand, is easy to balance without adding lead in the nose if you use light wood in the tail. If additional nose weight should be necessary due to heavy building, ete, simply spply an additional coat of fiberglass resin to the engine and tank areas. I call this "working ballast" opposed to dead ballast. Two coats of fiberglass (polyeater) resin applied inside and outside the fuselage from the nose to bulkhead C will increase the structural stremgth and protect the wood sgainst fuel-soak. I use fiberglass resin rather than clear or colored dope to fuelproof my models. The resin costs a fraction of dope and lasts for years, those models coated with dope brecme fuel soaked in a few months I used A-1 brand boat resin with 30 drops of catalyst to 4 cc . of resin. This gives a hardening time of

Fuablage sides bwill and ready to join.

Fulslage Luvkheads cut and marlied.

$4-5$ hours at 70°,

In designing the wing, I chose a lower aspect ratio and larger wing area. The airfoal is an 11% modified Clark Y with the Center of Lift at one-third of the chord from the leading edge. The wing has thinner tips and tip ribs resalting in s lower drag coefficient. The superior lift of this airfoil and low drag, coupled with a lifting stab, makes this airplane quite efficient. To achieve stability into the stall, each wing tip has $3 / 8^{\prime \prime}$ of wasbout. This allowa the root portion

Fuselage framed up - botrom nose sheeting giued and ploned.

Close-up of failwheef assembly.
to stall first while the tips are still flying and providing lift. With the wing covered using any of the iros-ons, the washout can be warped into it by twisting the tip trailing edges up and reshrinking the covering. The prototype was covered with MocoKote.

CONSTRUCTION

Begin by cutting out the firewall A,
bulkheada B, C, A1, A2, A3, and A4 from the material shown. Make two identical fuselage kidea by building one side over the otber, separsted by waxpsper. The longerons are spruce. Make certain all the longerons are equal in terms of grain structure and stiffness. The uprights, diagonals, and cross members are balsa.

Cut to shape the $1 / 8^{\prime \prime}$ medium balas
fuselage exterior sheeting for the "outside" of each side; make oertain you have a left and right hand side! Glue the sheeting in place using your favorite glue. I used white glue bere, allowing the sides to remain pinned to the board overnight. Next, mark the bulkhead locations on the inside of the fuselage sides. At this stage I dusted off my truaty RCM fuselage Jig. If you don't have one, why motorder a reprint of the article and build one? Believe me, is makes building srooked airplanes almost impossible! Using epoxy, install the bulkheads A, B, and C in place. If a centerline is marked on each bulkhead prior to assembly, this can be alignod with the centerline on the fuselage jig, making it simple to keep everything atraight and true. Now pull the tail post together and epory. Install the $1 / 2^{\prime}$ hard balsa triangle firewall support. Install the $1 / 8^{\prime \prime}$ plywood tank floor. Now glue A3 and A 4 in place and sheet with $1 / 8^{*}$ bslea.
A1 and A2 make into a removsble fuel hatch. Temporarily install them against A3 and the firewall with a few drops of CA glue. Install the $14^{\prime \prime}$ sq. hard balsa stringers in the notches. Install two additional stringera between the first throe. The hatch and A3/A4 sre covered with $1 / 8^{\prime \prime}$ bslss

Completed fuselage.
also be used. Using slow cure epoxy, install the motor mounts. Check to be certain that the thrust angles are correct, and that the mounts are parallel. The prototype had 4° of downthrust and 2° of right thrust. When the epoxy has cured, drill out the motor mounts sand secure blind nuts on the bottom side of the mounts with gap filling CA glue.

Cut oat and sand to shape the soft balsa nose block, drilling a $1 / 4^{*}$ oil drain bole in back of the block. The upper portion of the block will have to
sheet which muat be steamed prior to beding over the hatch. White glue works fine on the damp wood. When the glue has dried, carefally pop the hatch loose. A hatch bold-down is made by gluing a $1 / 8^{\circ}$ plywood scrap to the underside of the top hatch stringer and screwing a. $1 / 4^{*}$ screw cye into it. Two ndditional screw eyes are installed at the corners of the tank Cose as shown. $\mathrm{A} \geqslant 64$ rubber band is hooked to the two corner serem eyes, then to the underside of the hatch. Make two $18^{\prime \prime} \times 1 / 2^{\circ} \times 11 / 8^{\prime \prime}$ plywood

Fin and rudier completed.
guides for the hatch bottom/sides. Epoxy these to the hatch using waxpaper to prewent the guides from sticking to the fuselage sides. The prototype used a 12 oz tank and this hold-down metbod worked fine. Sand the hatch and shoeting on A3/A4 to blend, checking hatch for proper fit. The hatch ends should be sanded so a

Compieted fuseinge with fail assembly attached.
matchbook cover can be slid between the firewall and A3. This assures proper fit when the covering is completed.

Cut out the $1 / 2^{\prime \prime} \times 3 / 4^{\prime \prime} \times 4 / 2^{\prime \prime}$ hardwood motor mounts. I used white oak. Trial fit your engine. The motor mounts and engine compartment heve been designed to accommodste a 4-strake engine with the carb in the rear. However, a 2 -stroke engine can
be hollowed oat to clear the engine case. Epoxy the block to the fuselage sides and to the underside of the motor mounts. Notes Don't omit this hlock as it adds a gob of strength to the nose area and abeorhs the engine vibration.
Install the $1 / 8^{\prime \prime}$ hard balsa, rear stab/fuselage stiffening sheet. Install the $1 / 4^{\prime \prime}$ sq. balse creas bracing and diagonals, top and bottom. Caution: Don't install the last bottom diagonal

Stab and elevater completed.

Stab ready for sanding.
and croes brace until the tail wheel strut has been installed. The reston for this will be evident if one fasils to follow these instructions. Now plan and fabricate the tail wheel strut from music wire. I used $1 / 8^{7}$ wire on the prototype; however, 3/32" wire oovald be used and would be easier to bend. Cut out the $1 / 8^{\prime \prime}$ plywood, top and bottom strut plates. Epoxy the upper plate to the underside of the $1 / 8^{+}$stab stiffener sheet. Now mark and drill the top exit hole. Stip the lower plate on the strat and rotate the strut into

Two wing peweis completed ready to join.

the faselage, inserting the top L-bwend through the top plate. Rotate the strut downward to its final position. Epoxy the lower plate in place after checking alignment and freedom of movement. Now install the last fuselage eross brace and diagonal. A load bearing washer is coldered on the strut which removes any pressure on the rudder and prevents upward movement of the strut during taxiing. The tail wheel steering arm is made from . 030 brasa and is silver aoldered to the strut. This solder joint is critical 80 make certain it's right because of the beating this arm will take during take-offs and landings. After soldering the arm, glue in the $1 / 8^{*}$ filler beneath the stah. In-tall the $38^{\prime \prime} 800$ balsa filler block under the rudder. Sand the filler and top longerons to clear the elevator tie.

Cut out the $1 / 4^{*}$ plywood landing gear plate and eposy in place. Make the landing gear from $5 / 32^{\circ}$ music wire, binding with sof oopper wire and solder. Mount the gear with six Goldbery landing gear clamps. Next, install the $1 / 4^{\circ}$ balsa sheeting, cross grain on the forward fuselage bottom. Install the $1 / 8^{+}$medium balas rear fusetage bottom sheeting.

Carve and sand to shape the $1^{\prime \prime} \mathrm{x}$ $11 / 4^{n} \times 41 / 2^{n}$ medium hard balsa cabin front block, and glue in place. Cut the

3/8" hardwood wing hold-down dowels, and epoxy in place. The rear dowel has $1 / 4^{\prime \prime}$ hard balsa gussets which must be glued into the sides of the faselage and drilled prior to installing the rear dewel. Install the $1 / 4^{\prime \prime} \mathrm{band}$ balsa rear dowet support behind bulkhead C , also the $1 / 4^{\prime \prime}$ hard balsa front cabin support behind balkhead B. Install the seoond $1 / 4^{\prime \prime}$
puahrods and throttle linkage. I used Gold-N-Rods in the prototype. Next, cut the pastrod exit slots in the $1 / 8^{\circ}$ balss sheets, and glue the $3 / 8^{\circ}$ sq. hard balsa servo tray supports in place. These ran the length of the cabin thus allowing the berwo tray to be positioned for balance. Note: A second $1 / 8^{\prime \prime}$ plywood pushrod exit plate must be glued over the $1 / 8^{\prime \prime}$ balsa; this allows the covering to be flush due to the presence of the flattened dowels on the fuselage longerons. The prototype had $316^{\prime \prime}$ hardwood dowels, sanded Hat on one side and glued to the outside of the sprace longerans. The dowels give a rounded appearance to the loagerons and they bring the cowering out even with the fuselage sides. By sanding the dowels flat on one side, the thickness is reduced to $1 / 8^{\prime \prime}$ and a flat glaing surface is provided. I used Goldberg Super Jet

Oibedral bvaces cut to shapp.

hard balsa cabin support ahead of bulkhead C. Cut the $1 / 4^{\prime \prime}$ spruce cabin/wing rest doublers to length and install using epoxy.

Plan and install your favorite

Joinhing wing halves at W. 1 Nba. Clothespins wark greet.
which worked fine. Should small gaps exist, simply stuff some of the sanding dast from the dowels in the crack and hit it with the Super Jet. Taper the last $3-4^{\prime \prime}$ of the dowels to nothing at the tail post.

Sand the entire fusclage with 100 grit, ending with 400 . Give the inside and outside of the fuselage two coats of fiberglass resis from the nose to bulkhead C. Allow the resin to care for at least eight hours between coats Pepent this sanding procedure until the resin is smooth. Remember, any surface imperfections left now will show up in the covering.

Cut out the windshield and side windows from . 020 clear acetate sheet; trial fit, allowing 1.8° overlap. The windowe can be installed after the covering is completed. Lightly sand the edge of the window opening and install the windows using Super Jet or any gap filling CA glue. The white residue on the windows can bo removed with water and ammonia.

Empennages

Construction of the fin and rudder is simple. I used contest grade balsa (4) lba./ cu. ft.) except for the main $3.8^{\circ} \mathrm{By}$. fin L.E. and T.E. These are

Thee pownd collee can works great to block up tips for dihedral
medium hard balsa. After asambly, sand the fin and rudder from 38° at the fin $\mathrm{L} . \mathrm{E}$. to $1 / 8^{\prime \prime}$ at the rudder T.E. This reduces weight and gives a nice streamlined appearance. A hard balsa block insert is made for the rudder L.E. where the tail wheel atrut intersect. Mark and drill out to fit the
to routh shape, Next, add the soft balsa fill-in blocks over the elevator T.E. When the glue has set, sand and taper to dashed lines. The elevator makes a smooth transition from $1 / 2^{\prime}$ to $18^{\prime \prime}$. Cut oat the ejaser notches in the cunterblock and tipes. Cut to length the $1 / 8^{\prime \prime} 8 q$, very hard balsa spars and glue

Compieted tramed up "Old Thwer."
in place. Sand the stab L. E. and tips to rounded shape; the tips are sanded to less than $1 / 2^{\prime \prime}$ thick, making a smooth transition from the L.E. to the elevator'T.E. Now slot and install your favorite hinges. After installing the hinges, 8 sud the hinge area to roranded shape to allow full up and down elevator movement. The fin and rudder hinge area must also be rounded and checked for full right and loft movement. The total weight of the empennage was $5 \mathrm{~V} / \mathrm{ce}$.

Wing:

The wing construction requires a flat and true work surface. Check to be sure your work sarface is flat and true because constructing a wing on a warped or uneven surface will produce a wing that is going to be difficult, if not impossible, to true-up later.

The wing center section W-1 remains flat, the dihedral break occurs at the W-1/W-2 rib junction. Begin by cutting out the ribs from 1/8* medtium halsa sheet. Cut out the tips from 1/2" 80 (b) balss sheet. Cut the $1 / 4^{\prime \prime} s q$. spruce spars to length, leaving a bit long. The wing L.E. is $5 / 8^{\circ} \times 3 / 4^{*}$ medium balsa. The L. E. and T.E. have $1 / 8^{\prime \prime}$ notches to receive the ends of the ribs. The L.E., T.E., and spars are joined at the W-1/W-2 rib junction. These must be beveled prior to assembly - use the bevel template on the plans. Begin assembly by gluing the L.E. and T.E. in the W-1 section to the L.E. and T.E. in the W-2 eection, using the bevel template. Make certain both sets are angled equally. Now pin the W-2 L.E. and TE. to the board, allowing the W-1 section to angle upwards. With the lower spars pinned over the plan, glue in the W-2 ribs, adding the wing tipa. Note grain direction when constructing the wing tip8. I used Super Jet here and it worked fine. Next, glue in W-3, W-4 and the $3 / 8^{\prime \prime}$ soft balsa fill between
strut wire. Don't epory until final assembly. Slot and isstall your hingua.
Cat out the stab ribs from $1 / 16^{\prime \prime}$ medium balsa sheet. The ribs in the elevator are fill-in type and are cut as oversize blanks, then installed and sanded to airfoil shape. The leading and trailing edgea sare medium balsa except for the stab T.E. which is hard bslas. Begin assembly by gluing the stab ribe and center block to the L.E. and T.E. Add the $1 / 2^{\prime \prime}$ soft shoec balsa tips Construct the elevator T.E. from $316^{\prime \prime}$ medium balsa sheet. Install the 18' plywood elevator tie. Now glue the elevastor T.E. to the L.E., adding the unsanded rib blanks. Note: The ribs on either side of the elevator tie and the tip ribs are higher due to the fill-in blocks. Add thece ribs after the blocks have been installed and sanded

W-3 and the end of the L.E. The purpose of the block is to prevent the covering from samzing in this area. The top spars will have to be steamed from the last W-2 rib to the tip due to the fairly sharp drop across W-3, W-4 to the tip. White glue works fine on the damp wood. Caution: When installing the top spars, make certain the wing is well-pinned to your board due to the bending pressure across ribs W-3 and W-4. Wait overnight for the glue to thoroughly cure before removing the wing panel from the board.

With the two wing panels completed, proceed to the center section. Glae a W-1 rib to the outside of the first W-2 on each panel leaving a $3 / 32^{\prime \prime}$ shoulder all around for the center sheeting. The spars in W -1 section are also $3 / 22^{\prime \prime}$ lower than the W-2 spars; again, this is to accommodate the center sheeting, allowing the top of the sheeting to be flush with the outer panels. With the center seetions pinned flat to the bosrd, allow the outer panels to angle upwards. 1 used the MJB coffee cans bere under each tip. The cans are the 3 lb . size and measure $6^{\prime \prime}$ acroes. My bailding board is approximately $1 / 2$ thick, giving me 51/2' of dihedral for each wing tip. Glue in the wing eenter, W-1 ribs, centering each rib on the L.E. and T.E. with scrap 3/32" balsa, plaoed under each rib.

Next install the spars in the W-1 section. The shear webs are 3/32" hard balsa and are set vertieal grain on both sides of the front and ress spars. I used white glue bere, elamping with clothespins. Next, install the $1 / 16^{\circ}$ hard balsa diagonal braces in the wing middle section. Note: These were not installed on the prototype - zk a result, the wing lacks some torsionsl stiffhess. I definitely would install the bracing for this reason' The bracing can be installed slightly oversize, then sanded with a large sanding board to conform to the ribs. If you are a new pilot, or if rough use is expected, the bracing should be installed in the forwand and rear wing sections along with the middle section - the weight gain will be minimal compared to the increased strength and torsional stiffness this bracing will provide. A weight savings can be achieved by sanding esech brace to tight fit; this allows the use of CA-type glue rather than the heavier epoxy or white glaed.

With both wing panels completed, join the two halves with epoxy, blocking up the tips with the coffec cans. While the glae is curing, make certain the $\mathrm{W}-1$ section remains perfectly flat to your board otherwise, the wing will not be true when installed on the fuselage. When the epoxy has set, cat oat the W-1 and
W. 2 ribs and install the plywood dihedral bruces. The ribs can be easily cut using a razor saw. Install DB1 and DH2, first allowing the epoxy to set, tben install DB3 and DB4. Do not make these dihedral braces from lite ply due to the tremendous bending loads imposed on these members.
Sheet the wing center with 3/32' hard balsa sheet, top and bottom. Note the direction of the grain. Now install the $3 / 16^{\prime \prime}$ hardwood dowel, T.E. protector. Cat away the balsa T.E. to allow the domel to fit flush to the wing surface. Use epoxy here. Sand the entire wing, especially the tips and where the L.E. and T.E. join the tips. Taper the $3.8^{\prime \prime}$ soft fill block to rib W-3. The wing tipe are airfoil shaped at the W-3 and W-4 ribs, changing to a radius at the spar to tip and T.E. The tips are taper sanded from $1 / 2^{\circ}$ to 318° to meet the T.E.
The final step is an important one which is often neglected. This step is bslancing the wing. If omitted, the heavy side will tend to bank the aireraft, causing difficult trim problems and adversely affecting the flight and handling characteristics. For the benefit of new modelers, the following is the method I use: First, mark a line at the "exact" center of yoar wing. This is done on the top sheeting. Next, lay the wing inverted over a straightedge clamped in your vise. Make certain the centerline and straightedge coincide and both wing panels are free to move up and down. The light side can have lead weight added to the tip until the wing bsalances perfectly. If you are going to use epoxy, don't forget to include its weight in the total.
The wing can now be covered. I used Super MonoKote, as mentioned earlier. With the wing covered, the 318° of washout can be installed as follows: Weight down the wing center. Twist up the tip at the trailing edge and reshrink the covering. Do the same for the other side, making certain both sides are "exactly" the same. Notes I have found that a few tiny wrinkles left in the covering material will make the wing easier to warp. These wrinkles will diasppear when the covering is beated to install the washout.

Balancing the Aircraft:

Mostof us "old geezers" know how to properly balance an aireraft and if you are in this group, simply akip this part. However, for the benefit of new modelers, the following is the method I use: Install the engine, fuel tank, pushrods, and landing gear, etc. Temporarily install your radio gear. Mark the underside of your wing sext to the cabin windows with a dot corresponding to the C.G. position on
the plans. Place your index fingers on these dots and lift the aircraft. The aireraft is balanoed when it hangs slightly $\left(10^{\circ}-12^{\circ}\right)$ nose down. The servec and bsttery pack msy be moved to achieve the correct balance. If the aircraft fails to balance (say it's tail heavy as is often the case), lead can be added to the nose - usaally as far forward as posaible or an additional application of fiberglass resin may be applied. Should the model be nase heavy, lead can be added to the tail. The Old Timer balanced perfectly without adding any weight to the nose or tail. Following balancing, mount your radio gear securely. The Old Timer's fuselage has room for plenty of foam rubber. Permanently install the windows with CA glue.

Flying:

If you're like me, I read this part first!
My gool was to design a better flying mousetrap --er, I meant sport trainer -- that is stable in the air, forgiving of a new pilot's mistakes, easy to baild and repair when damased, atrong, yet light, and looks like an airplane. I believe the Old Timer meets or exeeeds these objectives. The old Timer can fly so slow you may be inclined to run along - a good jogging companion, you say? The airplane can becomfortably flown 6 to 10 feet above the ground to impress your spectators. At this altitude the Old Timer really looks like an airplane should especially with the putt-putt-putt of that 4 -stroker completing the picture.
Take-offs are impressive; the tail comes up immediately upon spplication of power. Roll out is $10-20$ feet; however, I like to let her run along the ground with ber tail in the air and then gently nudge her into the wild blue. Take-offs can be scoumplikhed at half throttle with the 4-stroke .61. Minimal rudder is required during the climb-sut and altitude is a function of power with only a tad of up elevator. In the air this airplane is indeed "pilot-friendly," turns are silky smooth with jast a tad of up needed, stalls are mushy, the break gentle and straight ahead. Altitude loss is less than 10 feet. When she stalls, relax the back pressure and she's fying again. I haven't bown able to get this sirplame in trouble as yet, even with exaggerated uee of the controls. Spins are slow and gentle, the spin exit is immediate with a little opposite rudder. Inside loops are graceful and outride loopa are sext to impossiblel She will fy inverted with full down elevator, but the airplane dossn't like to be upside down.

Thermal sniffing is a cinch on any warm day, especially if broken Cumulus clouds are preeent. Climb to 300-400 feet, cut the power and watch
the airplane. When lift is encountered, the wings waggle, or the ship simply ascends. In strong lift, down trim, and even down elevator, aid penetration. If you want to save fuel, shut down the engine with low throttle trim and fly for free. If you get tired of tracking the Old Timer, set the rudder trim for a gentle left or right bank. Put the transmitter on the ground and go lie in the grass. The Old Timer will fly hands off (assuming the trim and balance are correct and the wing is not warped) until either the lift moves off or you get bored stiff. Now, try that with one of those other sport trainers! Dead stick landings are pleasant,
although this airplane loves to stay aloft, so remember to give her plenty of room for the landing.

Control Settings:

I have the control settings on the Old Timer set up as follows using a three channel radio: Rudder - $11 / 4^{\prime \prime}$ right, $1^{11 / s^{\prime \prime}}$ left. Elevator - $1^{\prime \prime}$ up, $1^{\prime \prime}$ down. The throttle is set up so the engine can be shut down with the low trim setting.

Summary:

At risk of again sounding evangelistic, I believe the Old Timer captures the true spirit of flying radio controlled model aircraft. This airplane truly delights in its element,
yet on the ground, it remains well-mannered. It is not demanding in terms of pilot skills, being very forgiving and easy to fly - ideal for a low time pilot! Yet, in the hands of an experienced pilot, the Old Timer can be cranked on and she will impress the spectators with a show of speed, and ease of maneuverability. This airplane is, frankly, a "kick in the seat of the pants" to fly! I am confident this model will meet and exceed your expectations as it has mine. Why not order a set of plans today . . . you'll be glad you did! Good luck, happy building and flying your Old Timer.

